oter

Paths sequences connected vertices from "summary" of Introduction to Graph Theory by Douglas Brent West

A path in a graph is a sequence of distinct vertices in which consecutive vertices are adjacent. For example, in the graph G = (V, E), a path from vertex u to vertex v is a finite sequence of distinct vertices v0, v1, v2, ..., vk such that v0 = u, vk = v, and each vi is adjacent to vi+1 for i = 0, 1, 2, ..., k - 1. The length of a path is the number of edges in the path, which is one less than the number of vertices. A sequence of vertices {v0, v1, v2, ..., vk} is a path if and only if {vi, vi+1} is an edge for i = 0, 1, 2, ..., k - 1. The vertices v0 and vk are the endpoints of the path. If the graph is directed, then the edges {vi, vi+1} must be directed edges with vi as the tail and vi+1 as the head. Two vertices u and v are connected if there is a path from u to v. In other words, there is a sequence of vertices ...
    Read More
    Continue reading the Microbook on the Oter App. You can also listen to the highlights by choosing micro or macro audio option on the app. Download now to keep learning!
    oter

    Introduction to Graph Theory

    Douglas Brent West

    Open in app
    Now you can listen to your microbooks on-the-go. Download the Oter App on your mobile device and continue making progress towards your goals, no matter where you are.