oter

The proof of transcendence of pi remains an unsolved problem from "summary" of A History of [pi] (pi) by Petr Beckmann

The transcendence of pi, the ratio of the circumference of a circle to its diameter, has long been a subject of fascination and inquiry among mathematicians. Despite centuries of study and research, the proof of pi's transcendence remains elusive, posing a challenging problem that continues to defy resolution. To understand the concept of transcendence, it is important to grasp the distinction between transcendental and algebraic numbers. Algebraic numbers are solutions to polynomial equations with integer coefficients, while transcendental numbers cannot be expressed as the root of any such equation. Pi is known to be a transcendental number, as proven by Johann Lambert in 1768. This discovery was a significant milestone in the history of mathematics, highlighting the unique and enigmatic nature of pi. The proof of pi's transcendence is a complex and intricate problem that has puzzled mathematicians for centuries. While the transcendence of pi has been established, proving this fact rigorously and definitively remains a formidable challenge. The transcendence of pi is intimately connected to the nature of the circle and its fundamental properties, m...
    Read More
    Continue reading the Microbook on the Oter App. You can also listen to the highlights by choosing micro or macro audio option on the app. Download now to keep learning!
    oter

    A History of [pi] (pi)

    Petr Beckmann

    Open in app
    Now you can listen to your microbooks on-the-go. Download the Oter App on your mobile device and continue making progress towards your goals, no matter where you are.